Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4408-4414, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567928

RESUMO

Tuning the interfacial Schottky barrier with van der Waals (vdW) contacts is an important solution for two-dimensional (2D) electronics. Here we report that the interlayer dipoles of 2D vdW superlattices (vdWSLs) can be used to engineer vdW contacts to 2D semiconductors. A bipolar WSe2 with Ba6Ta11S28 (BTS) vdW contact was employed to exhibit this strategy. Strong interlayer dipoles can be formed due to charge transfer between the Ba3TaS5 and TaS2 layers. Mechanical exfoliation breaks the superlattice and produces two distinguished surfaces with TaS2 and Ba3TaS5 terminations. The surfaces thus have opposite surface dipoles and consequently different work functions. Therefore, all the devices fall into two categories in accordance with the rectifying direction, which were verified by electrical measurements and scanning photocurrent microscopy. The growing vdWSL family along with the addition surface dipoles enables prospective vdW contact designs and have practical application in nanoelectronics and nano optoelectronics.

2.
Nano Lett ; 24(18): 5467-5473, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647318

RESUMO

The discovery of room-temperature ferromagnetism in van der Waals (vdW) materials opens new avenues for exploring low-dimensional magnetism and its applications in spintronics. Recently, the observation of the room-temperature topological Hall effect in the vdW ferromagnet Fe3GaTe2 suggests the possible existence of room-temperature skyrmions, yet skyrmions have not been directly observed. In this study, real-space imaging was employed to investigate the domain evolution of the labyrinth and skyrmion structure. First, Néel-type skyrmions can be created at room temperature. In addition, the influence of flake thickness and external magnetic field (during field cooling) on both labyrinth domains and the skyrmion lattice is unveiled. Due to the competition between magnetic anisotropy and dipole interactions, the specimen thickness significantly influences the density of skyrmions. These findings demonstrate that Fe3GaTe2 can host room-temperature skyrmions of various sizes, opening up avenues for further study of magnetic topological textures at room temperature.

3.
J Lipid Res ; 64(7): 100398, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276941

RESUMO

Lipoprotein(a) (Lp(a)) is a largely genetically determined biomarker for cardiovascular disease (CVD), while its potential interplay with family history (FHx) of CVD, a measure of both genetic and environmental exposures, remains unclear. We examined the associations of Lp(a) in terms of circulating concentration or polygenetic risk score (PRS), and FHx of CVD with risk of incident heart failure (HF). Included were 299,158 adults from the UK Biobank without known HF and CVD at baseline. Hazards ratios (HRs) and 95% Cls were estimated by Cox regression models adjusted for traditional risk factors defined by the Atherosclerosis Risk in Communities study HF risk score. During the 11.8-year follow-up, 5,502 incidents of HF occurred. Higher levels of circulating Lp(a), Lp(a) PRS, and positive FHx of CVD were associated with higher risks of HF. Compared with individuals who had lower circulating Lp(a) and no FHx, HRs (95% CIs) of HF were 1.36 (1.25, 1.49), 1.31 (1.19, 1.43), and 1.42 (1.22, 1.67) for those with higher Lp(a) and a positive history of CVD for all family members, parents, and siblings, respectively; similar results were observed by using Lp(a) PRS. The risk estimates for HF associated with elevated Lp(a) and positive FHx were attenuated after excluding those with incident myocardial infarction (MI) during follow-up. Lp(a) and FHx of CVD were independent risk factors for incident HF, and the highest risk of HF was observed among individuals with both risk factors. The association may be partly mediated by myocardial infarction.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Infarto do Miocárdio , Adulto , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Incidência , Lipoproteína(a)/genética , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/complicações , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Fatores de Risco
4.
Nano Lett ; 22(3): 1138-1144, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35050626

RESUMO

Revealing the ultrafast dynamics of three-dimensional (3D) Dirac fermions is critical for both fundamental science and device applications. So far, how the cooling of 3D Dirac fermions differs from that of two-dimensional (2D) and whether there is population inversion are fundamental questions to be answered. Here we reveal the ultrafast dynamics of Dirac fermions in a model 3D Dirac semimetal Cd3As2 by time- and angle-resolved photoemission spectroscopy with a tunable probe photon energy. The energy- and momentum-resolved relaxation rate shows a linear dependence on the energy, suggesting Dirac fermion cooling through intraband relaxation. Moreover, a population inversion is reported based on the observation of accumulated photoexcited carriers in the conduction band with a lifetime of 3.0 ps. Our work provides direct experimental evidence for a long-lived population inversion in a 3D Dirac semimetal, which is in contrast to 2D graphene with a much shorter lifetime.

5.
Nano Lett ; 21(14): 6080-6086, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34242038

RESUMO

MnBi8Te13 is an intrinsic ferromagnetic (FM) topological insulator with different complex surface terminations. Resolving the electronic structures of different termination surfaces and manipulation of the electronic state are important. Here, by using micrometer spot time- and angle-resolved photoemission spectroscopy (µ-TrARPES), we resolve the electronic structures and reveal the ultrafast dynamics upon photoexcitation. Photoinduced filling of the surface state hybridization gap is observed for the Bi2Te3 quintuple layer directly above MnBi2Te4 accompanied by a nontrivial shift of the surface state, suggesting light-tunable interlayer interaction. Relaxation of photoexcited electrons and holes is observed within 1-2 ps. Our work reveals photoexcitation as a potential control knob for tailoring the interlayer interaction and surface state of MnBi8Te13.

6.
Nat Commun ; 11(1): 2370, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398654

RESUMO

The quantum limit is quite easy to achieve once the band crossing exists exactly at the Fermi level (EF) in topological semimetals. In multilayered Dirac fermion systems, the density of Dirac fermions on the zeroth Landau levels (LLs) increases in proportion to the magnetic field, resulting in intriguing angle- and field-dependent interlayer tunneling conductivity near the quantum limit. BaGa2 is an example of a multilayered Dirac semimetal with its quasi-2D Dirac cone located at EF, providing a good platform to study its interlayer transport properties. In this paper, we report the negative interlayer magnetoresistance induced by the tunneling of Dirac fermions between the zeroth LLs of neighboring Ga layers in BaGa2. When the field deviates from the c-axis, the interlayer resistivity ρzz(θ) increases and finally results in a peak with the applied field perpendicular to the c-axis. These unusual interlayer transport properties are observed together in the Dirac semimetal under ambient pressure and are well explained by the model of tunneling between Dirac fermions in the quantum limit.

7.
Nat Commun ; 10(1): 5505, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796737

RESUMO

In materials chiral fermions such as Weyl fermions are characterized by nonzero chiral charges, which are singular points of Berry curvature in momentum space. Recently, new types of chiral fermions beyond Weyl fermions have been discovered in structurally chiral crystals CoSi, RhSi and PtAl. Here, we have synthesized RhSn single crystals, which have opposite structural chirality to the CoSi crystals we previously studied. Using angle-resolved photoemission spectroscopy, we show that the bulk electronic structures of RhSn are consistent with the band calculations and observe evident surface Fermi arcs and helical surface bands, confirming the existence of chiral fermions in RhSn. It is noteworthy that the helical surface bands of the RhSn and CoSi crystals have opposite handedness, meaning that the chiral fermions are reversed in the crystals of opposite structural chirality. Our discovery establishes a direct connection between chiral fermions in momentum space and chiral lattices in real space.

8.
Nat Commun ; 7: 13833, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982036

RESUMO

Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Of particular interest is the interplay of Dirac carriers with other quantum phenomena such as magnetism. Here we report on a two-magnon Raman scattering study of AMnBi2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison with the reference compound BaMn2Bi2, we show that the Dirac carrier layers in AMnBi2 significantly enhance the exchange coupling between the magnetic layers, which in turn drives a charge-gap opening along the Dirac locus. Our findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin-Fermion interaction. The results also hold great promise for applications in magnetic Dirac devices.

9.
Sci Rep ; 3: 1216, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23386972

RESUMO

We report here that a new superconducting phase with much higher Tc has been found in K intercalated FeSe compound with excess Fe. We successfully grew crystals by precisely controlling the starting amount of Fe. Besides the superconducting (SC) transition at ~30 K, we observed a sharp drop in resistivity and a kink in susceptibility at 44 K. By combining thermodynamic measurements with electron spin resonance (ESR), we demonstrate that this is a new SC transition. Structural analysis unambiguously reveals two phases coexisting in the crystals, which are responsible respectively for the SC transitions at 30 and 44 K. The structural experiments and first-principles calculations consistently indicate that the 44 K SC phase is close to a 122 structure, but with an unexpectedly large c-axis of 18.10 Å. We further find a novel monotonic dependence of the maximum Tc on the separation of neighbouring FeSe layers.

10.
Inorg Chem ; 51(16): 8842-7, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22853625

RESUMO

We present here the structures and magnetism of two quasi-1D linear chain compounds of BiM(2)BP(2)O(10) (M = Co, Ni), which were synthesized by traditional solid-state reactions for the first time. Two title compounds crystallize in the monoclinic system with space group P2(1)/c and feature novel 3D structures with a linear chain structure of {MO(6)}(n) further connected by [BP(2)O(10)](7-) anionic groups. The results of magnetic property measurements evidence the antiferromagnetic properties of both compounds in low magnetic field and a field-dependent metamagnetic transition from the antiferromagnetic to ferromagnetic ground state of the BiCo(2)BP(2)O(10) complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA